

Evolving a Software Requirements Ontology

Ricardo de Almeida Falbo1, Julio Cesar Nardi2

1Computer Science Department, Federal University of Espírito Santo – Brazil
2Federal Center of Technological Education of Espírito Santo - UnED Colatina - Brazil

falbo@inf.ufes.br, julionardi@yahoo.com.br

Abstract. Requirements Engineering (RE) is a complex process. Establishing a
common conceptualization about its domain is important for several reasons,
such as communication and interoperability between RE tools. Truthfulness to
reality and conceptual clarity are fundamental quality attributes of domain
ontologies, and are directly responsible for the effectiveness of these models as
reference frameworks. A way to achieve these quality attributes is by grounding
domain ontologies in a foundational ontology. This paper presents an evolution
of a Software Requirements Ontology that was reengineered by mapping the
concepts of its previous version to the Unified Foundational Ontology (UFO).

1 Introduction

Gather the right requirements in a software project is one of the most important
activities of the software process. Deficient requirements are one of the main causes
of software project failure [1], and thus the Requirements Engineering (RE) process is
crucial for the success of a project and it should be carefully performed.

Despite of the heterogeneous terminology and the diversity of RE processes
defined in the literature, a RE process should take into account the following related
activities: elicitation, analysis, specification, verification and validation, and
management of software requirements [1] [2] [3]. These activities may vary in timing
and intensity for different projects, but it is widely recognized that software projects
are critically vulnerable when these activities are performed poorly [3].

For a RE process to be well implemented, however, several factors should work
well, among them the communication between people, the interoperability between
automated supporting tools, and requirements reuse. Barriers to these factors many
times arise from the lack of a shared understanding for the terms used to describe the
RE domain. Ontologies are an emerging mechanism for dealing with this problem.
According to Guizzardi [4], a domain ontology is a conceptual specification of the
semantics of a certain domain that describes knowledge about it. An ontology aims to
restrict vocabulary interpretations so that its logical models get as near as possible to
the set of structures that conceptualize the domain. Thus a domain ontology can be
used to establish a common conceptualization about the RE domain in order to
support communication, requirements reuse and RE tools integration.

In [5], we presented a Software Requirements Ontology (SRO) that was developed
aiming at partially formalizing the knowledge involved in the RE domain. Its main
intended use was to support the integration and development of RE tools. However,

during the RE tools development, we notice that there are some problems with it,
resultant mainly from implicit ontological commitments. Thus we decide to evaluate
and reengineer it by mapping its concepts to the Unified Foundational Ontology
(UFO) [4] [6]. UFO has been used to evaluate, re-design and integrate (meta) models
of different conceptual modeling languages [4], as well as to evaluate, re-design and
give real-world semantics to domain ontologies [6]. By doing this, we have corrected
a number of conceptual problems in the SRO by making it more truthful to the
domain being represented and by making explicit some of its ontological
commitments that were implicit.

This paper presents the resulting version of the SRO and is organized as follows.
Section 2 talks a little bit about Requirements Engineering and ontologies. In section
3, we present the new version of the SRO. Finally, section 4 presents our conclusions
and future works. Due to the lack of space, the ontological analysis that was done to
achieve the new version is out of the scope of this paper.

2 Software Requirements Engineering and Ontologies

Requirements Engineering (RE) is the branch of Software Engineering concerned
with the real-world goals for functions of software systems, constraints on them, and
also with the relationship of these factors in the specification of the software behavior
and to their evolution over time [7].

In general, the RE process involves elicitation, analysis, specification, verification
and validation, and management of software requirements. Requirements elicitation is a
human activity concerned with identifying requirements, what also regards where they
come from and how software engineers can collect them [3].

Requirements Analysis deals with requirements classification, modeling, and
allocation to components, and also with detecting and resolving conflicts between
them [2] [3]. Requirements Specification, in turn, aims to produce an official
document, generally called Software Requirements Specification (SRS), which is to
be systematically reviewed, evaluated, and approved [3]. The quality of this document
is very important because it will be widely used throughout the development process.

Requirements Verification and Validation aims exactly to ensure that the work
products produced during the RE process, including the SRS, are quality products.
The requirements should be validated to ensure that the software engineers have
understood the requirements. It is also important to verify if the work products conform to
organizational standards and if they are understandable, consistent and complete [3].

Finally, requirements can change or evolve due to a variety of reasons, and thus it
is necessary to manage requirements. In this context, traceability is essential. It is
possible only if there are explicit links between requirements and other assets of the
software process. Identifying how requirements are decomposed, dependencies and
conflicts between them, their sources, stakeholders, and work products that deal with
them are also essential in order to trace requirements [2] [8].

As we can see, the RE process is very complex. It is a multi-disciplinary process,
employing several people, techniques and tools at different phases of the software
development. This shows that we need a shared understanding about the requirements
domain, and thus developing an ontology about the requirements domain is important

to support several tasks, such as communication and reuse, as well as to improve RE
tool interoperability. The importance of ontologies for the requirements domain is
recognized by several researchers. Riechert et al. [9], for instance, developed a
requirements engineering ontology, capturing requirements relevant information that
were used to develop a tool for semantic based RE.

As told before, we developed an ontology about the requirements domain,
presented in [5]. However, we detected some problems with it, and we decided to
analyze it. As pointed by Guizzardi et al. [6], a foundational ontology1 can be used to
evaluate, re-design and give real-world semantics to domain ontologies. For
evaluating our SRO, we used the Unified Foundational Ontology – UFO [4] [6]. UFO
has been developed based on a number of theories from Formal Ontology,
Philosophical Logics, Philosophy of Language, Linguistics and Cognitive
Psychology. It is composed by three main parts: UFOs A, B and C.

UFO-A, an ontology of endurants (objects), is its core. A fundamental distinction
in this ontology is between the categories of Particular (Individual) and Universal
(Type). Particulars are entities that exist in reality possessing a unique identity, while
Universals are patterns of features, which can be realized in a number of different
particulars. UFO-A is presented in depth and formally characterized in [4].

UFO-B is an ontology of perdurants (events). Perdurants are individuals composed
of temporal parts. They happen in time in the sense that they extend in time,
accumulating temporal parts [6]. They contrast to endurants, in the sense that
endurants are wholly present whenever they are present, i.e., they are in time, in the
sense that if we say that in a circumstance c1 an endurant e has a property P1 and in a
circumstance c2 it has the property P2 (possibly incompatible with P1), it is the very
same endurant e that we refer to in each of these situations [6].

UFO-C is an ontology of social entities (both endurants and perdurants) built on
top of UFO-A and UFO-B. One of its main distinctions is between Agentive and Non-
agentive substantial particulars, termed Agents and Objects, respectively. Agents can
be physical (e.g., a person) or social (e.g., an organization or a society). Objects can
also be further categorized into physical and social objects [6].

Due to space limitations, it is impossible to discuss here all the distinctions made
in UFO. So, in Figure 1 we present some of its concepts that are important for this
paper. The ones that are directly used here are shown detached in grey, and are
described in sequel.

Concerning universals, the following concepts were considered important for this
paper [4] [6]:

• Kind (from UFO-A): a substance sortal2 universal (see [4]) that supplies a
principle of identity for its instances (rigid sortals). Every object in a
conceptual specification should be an instance of a kind.

1 Foundational ontologies are theoretically well-founded domain-independent systems of

categories that can be used to improve the quality of conceptual models [6]. They describe
very general concepts like object, event, action etc, which are independent of a particular
domain.

2 Substantials are entities that persist in time, keeping their identity. Substantial universals are
patterns of features that can be realized in a number of different substantials. Some of them
are sortal (sortal universals), thus providing a principle of individualization, persistence and
identity. Others are merely characterizing (said mixin universals) [4].

Fig. 1. A Fragment of UFO, including concepts from UFOs A, B and C.

• Role (from UFO-A): a possible role that a substance sortal can play along its
history. An entity plays a role in a certain context, demarcated by its relations
with other entities.

• Category (from UFO-A): a rigid mixin3 that subsumes different kinds.
• Action Universal (from UFO-C): type of intentional event, describing patterns

of features instantiated by multiple action occurrences.
• Complex Action Universal (from UFO-C): an action universal that is

composed by other action universals.
Regarding particulars, the following concepts of UFO are important [6] [4]:
• Action (from UFO-C): an intentional event4, i.e., an event which instantiates

an action universal with the specific purpose of satisfying some intention.
• Complex action (from UFO-C): an action that is composed of two or more

participations. These participations can themselves be intentional (i.e., be
themselves actions) or unintentional events.

• Object (from UFO-C): a non-agentive substantial particular.
• Social Object / Agent (from UFO-C): an object / agent that is not physical.
• Normative description (from UFO-C): a social object that defines rules/norms

recognized by at least one social agent.
• Resource (from UFO-C): an object participating in an action.
• Relator (from UFO-A): an individual with the power of connecting entities.
In this paper, these distinctions are shown in the concepts of the Software

Requirements Ontology as stereotypes, indicating that they are subtypes of concepts
of UFO, in an approach analogous to the one defined in [4]. When a concept is not
stereotyped, then it presents the same stereotype of its super-type in the model.

3 Mixins are dispersive universals, covering many concepts with different principles of identity.
4 Events are possible transformations from a portion of reality to another, i.e., they may change

reality by changing the state of affairs from one (pre-state) situation to another (post-state)
situation. Events are ontologically dependent entities in the sense that they existentially
depend on their participants in order to exist (UFO-B) [6].

3 Software Requirements Ontology

In this section we present part of the reengineered Software Requirements Ontology
(SRO). Due to the lack of space, in this paper we concentrate on the conceptual model
developed, although competency questions were also defined. It is worthwhile to
point yet that this work was done in the context of the ODE (Ontology-based software
Development Environment) Project, in which there are other software engineering
ontologies developed. Thus we reused the conceptualization of the following
ontologies:

• Software Process Ontology [6]: this ontology is composed by sub-ontologies
about activities, resources, procedures and work products, and addresses the
basic conceptualization regarding the software process domain;

• Software Configuration Management Ontology [10]: conceptualize the
software configuration management domain, treating issues such as change
management, versioning, and repository structure;

• Software Organization Ontology: exploits the domain of software
organizations, describing their structure and also covering aspects related to
competencies of their members.

Figure 2 shows each ontology as a UML package, and the dependency associations
indicate that the SRO borrows part of the conceptualization defined in each one of the
others.

Fig. 2. The SRO and its dependencies with other ODE’s ontologies.

For making the ontology presentation easy, we divided it in four fragments,
discussed in sequel: RE process definition, Requirements definition and taxonomy,
Requirements interest and approval, and Requirements management. Concepts
introduced in the SRO are detached in grey.

Requirements Engineering Process Definition
Defining a Requirements Engineering (RE) process is the same as defining any

other software process. Thus, first, we inspected the software process ontology [6] to
see how it treats the definition of a software process. In this ontology, we have
software process kinds (Universals), which represent process models that can be
instantiated as software process occurrences (Particulars), as shown in Figure 3.

Fig. 3. A Fragment of the Software Process Ontology.

Taking the RE process into account and considering the RE process proposed in
SWEBOK [3], we have a RE process model composed by the following kinds of
activities: requirements elicitation, analysis, specification, verification and validation.
Activity kinds that the process model prescribes are instantiated as activities
occurrences (Activity in Figure 3). A specific project P can instantiate this process
model, giving rise to the P’s RE process. Depending on the life cycle model adopted
(concept not shown in Figure 3), several occurrences of the same activity kind can be
instantiated. For instance, if an incremental life cycle model is adopted, with 3 cycles,
then 3 activities of the kind requirements elicitation will be instantiated. The
decomposition and precedence between activities kinds are also generally defined in a
process model, and like process instantiation, they are also instantiated for projects.

In the definition of an organizational standard processes, it is usual to define, for
each kind of activity: (i) which kinds of work products are expected to be produced
and used, (ii) kinds of resources (software tools, equipments etc), (iii) roles of people
required to perform activities of such kind, and (iv) procedures (methods, techniques,
document templates and so on) that can be adopted in the execution of the activities.

When an organizational process (a process kind) is instantiated for a project,
giving rise to a project’s process (a process occurrence), many definitions
(procedures, resources kinds, person roles and work products kinds) are directly
reused by means of relating the corresponding process assets to the project’s activities
(activity occurrence), although some can be tailored for considering the project
particularities. It is worthwhile to point that, for instance, activities produce concrete

Work Products (Particulars). Although this is not shown in Figure 3, the software
process ontology also covers this.

In the case of the RE process, we can say, for instance, that the activity kind
Requirements Analysis requires a modeling tool as a resource kind, a Requirements
Engineer as a person role, and that it uses requirements as input and produces class
diagrams as output. When this part of the process model is instantiated to a project, it
gives rise to the corresponding relationships between an activity occurrence a and
these elements, i.e. a may also require a Requirements Engineering and a modeling
tool, may also produce class diagrams, and may also uses requirements as input.

Requirements Definition and Categorization
In general, requirements are sentences describing services that a system should
provide, constraints that it should obey and features that it should present. Moreover,
requirements are defined in the scope of a project. As shown in Figure 4, both
Requirements and Software Requirements Specifications (SRS) are artifacts, i.e. work
products that are typically put under software configuration management (see also
Figure 6). More specifically, a SRS is a document, i.e. an artifact that is not
executable, composed by, among others, textual sentences. In the case of a SRS, it is
composed, among others, by requirements, as stated by the following axiom:

 (∀ srs) softwareRequirementSpec(srs)→ (∃ r) ((subWorkProduct(r,srs) ∧ requirement(r))

Fig. 4. A fragment of the SRO dealing with requirements definition and taxonomy.

As cited before, requirements, as any other work products, are produced in a
project. Moreover, a project has a scope that is composed by several modules, to
which requirements are allocated. The following constraint applies: if a requirement r
is allocated to a module m, and r is produced in a project p, then m should belong to a
scope s that determines the scope of the project p.

(∀ r,m,p) (allocatedTo(r,m) ∧ producedIn (r,p) → (∃ s) ((partOf(m,s) ∧
determinesScopeOf(s,p))

A module can be decomposed into sub-modules. Thus, if requirement r is allocated
to module m2 that is part of another module m1, then r is also allocated to m1.

 (∀ r,m1,m2) (allocatedTo(r,m2) ∧ partOf(m2,m1) ∧ module(m1))→ allocatedTo(r,m1)
Requirements are categorized by requirement kinds, which in turn can be

decomposed in other requirement kinds, giving rise to a requirements taxonomy.
There are many possible requirement kinds, and an organization is free to define its
own taxonomy. In spite of that, there is a consensus that there are two broad main
classes of requirements: functional and non-functional requirements.

(∀ r,kr) (requirement (r) ∧ instanceOf(r,kr))→ requirementKind(kr)

Requirements Interest and Approval
The RE process involves people from several areas and with different points of view.
It is important to know the stakeholders that are interested in each requirement, in
order to facilitate negotiation, elucidation and change impact determination.
Moreover, it is necessary to have people responsible for a given requirement. Such
people can, for example, approve a requirement before it can be treated by subsequent
activities of the software process. Figure 5 shows a fragment of the software
requirements ontology that deals with these questions.

Fig. 5. A fragment of the SRO concerning requirements interest and approval.

According to the software organization ontology, people are organized in teams
that are allocated to projects. This leads to the following constraint: if a person p is
responsible for or interested in a requirement r that is produced in a project prj, then
she/he should be part of a team that is allocated to prj.

(∀ r, p, prj) ((interestedIn(p, r) ∨ responsibleFor(p, r)) ∧ producedIn(r, prj)) → (∃ t)
(partOf(p, t) ∧ allocatedTo(t, pr))

Requirements Management
Requirements management comprises change control, version control, status tracking
and traceability [8]. Concerning change and version control, we are talking about
putting requirements and Software Requirements Specifications (SRS) under
configuration management. So, to deal with these aspects, we reused the
conceptualization described in the Software Configuration Management (SCM)
Ontology [10]. In this ontology, artifacts when put under SCM derive Software
Configuration Items (SCIs). A SCI, in turn, has versions, as shown in Figure 6. The
SCM Ontology also describes other important concepts related to version control
(repository, branch, baseline, among others), and change control (change, checkout,
copy, checkin etc). Due to space limitations, these concepts are not shown in Figure 6.

Concerning traceability, it is very useful to establish a net of links between
requirements and other elements, such as other work products (including other

requirements), people and activities, in order to maintain the integrity of the
requirements (and also the integrity of related work products). The ability to keep
track of these relationships is crucial not only to integrity, but also for measuring the
impact of changes. These relationships includes structural relationships among a
requirement and other requirements that are its constituent parts (and also the
structural relationships among a SRS and the requirements that compose it),
dependencies between requirements, conflicts between requirements, the source of
requirements, and relationships between requirements and other work products that
describe, model or implement a requirement. Figure 6 shows all these relationships.

Fig. 6. A fragment of the SRO talking about requirements management.

The dependency relation between work products allows establishing dependency
links between requirements, denoting that if a requirement changes, then probably its
dependents need to be changed. This relation is also useful to map dependencies
between requirements and other work products. But there are a stronger dependency
relationship between a requirement and work products that effectively treat it, such as
analysis and design models and source code. Thus, we decided to explicitly model
this relation (Requirement is treated by Work Product) in order to capture this
important distinction.

Analogous to the dependency relation between work products, the whole-part
relation between work products allows establishing structural relationships among a
requirement and other requirements that are its constituent parts, and among a SRS
and the requirements that compose it. It is worthwhile to point that if a work product
wp2 is part of another work product wp1, then wp1 depends on wp2.

(∀ wp1,wp2) partOf (wp2, wp1)→ dependsOn (wp1, wp2)
Conflicts between requirements are another type of relationship that is very

important to capture. Conflicts can occur between two stakeholders requiring mutually
incompatible features, between requirements and resources, or between functional and
non-functional requirements. Only when conflicting requirements are known, actions

can be taken to manage them, what includes negotiating with stakeholders to resolve
them or to balance to maintain them acceptable.

For tracking requirements since their conception, it is necessary to capture the
context in which they were elicited. This source context are generally characterized
by, among others, work products been inspected, people interacting or being
observed, and activities being done.

4 Conclusions

This paper presented part of the latest version of our Software Requirements
Ontology (SRO), which was obtained by a reengineering process that grounded it in
the Unified Foundational Ontology. The use of UFO as a basis for reengineering the
SRO has shown to be very useful. When we looked at UFO, we corrected several
conceptual mistakes, making SRO more truthful to the domain being represented.

The SRO also covers requirements quality evaluation that was not discussed in this
paper. However, there are other aspects of the requirements domain that are not
addressed by the SRO and that should be incorporated to it in future works, such as
traceability of requirements to business goals.

References

1. H.F.Hofmann,F. Lehner. “Requirements Engineering as a Success Factor in Software
Projects, IEEE Software, July/August 2001.

2. G. Kotonya and I. Sommerville, Requirements Engineering: Processes and Techniques, John
Wiley & Sons, 2000.

3. IEEE (Institute of Electrical and Electronic Engineers), “SWEBOK - Guide to the Software
Engineering Body of Knowledge”, IEEE Computer Society, 2004 Version.

4. G. Guizzardi, Ontological Foundations for Structural Conceptual Models, Universal Press,
The Netherlands, 2005, ISBN 90-75176-81-3.

5. J.C. Nardi, R.A. Falbo, “Uma Ontologia de Requisitos de Software”, Proceedings of the IX
Iberoamerican Workshop on Requirements Engineering and Software Environments, La
Plata, Argentine, 2006 (in Portuguese).

6. G. Guizzardi, R.A. Falbo, R.S.S. Guizzardi, “Grounding Software Domain Ontologies in the
Unified Foundational Ontology (UFO): The case of the ODE Software Process Ontology”,
Proceedings of the XI Iberoamerican Workshop on Requirements Engineering and
Software Environments, Recife, Brazil, 2008.

7. P. Zave, “Classification of research efforts in requirements engineering”. ACM Computing
Surveys Journal, vol. 29, n. 4, 1997, pp. 315-321.

8. S. Robertson and J. Robertson. Mastering the Requirements Process. 1st edition, ACM
Press, Addison Wesley, 1999.

9. T. Riechert, K. Lauenroth, J. Lehmann, S. Auer, “Towards Semantic based Requirements
Engineering”, 7th International Conference on Knowledge Management (I-KNOW), 2007.

10. L.O. Arantes, R.A. Falbo, G. Guizzardi, “Evolving a Software Configuration Management
Ontology”, Proceedings of the Second Workshop on Ontologies and Metamodeling in
Software and Data Engineering, p. 123-134, João Pessoa, Brazil, 2007.

